首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   41篇
  2021年   7篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   5篇
  2015年   9篇
  2014年   4篇
  2013年   14篇
  2012年   11篇
  2011年   10篇
  2010年   7篇
  2009年   11篇
  2008年   9篇
  2007年   8篇
  2006年   12篇
  2005年   8篇
  2004年   11篇
  2003年   9篇
  2002年   5篇
  2001年   9篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1997年   9篇
  1996年   3篇
  1995年   4篇
  1992年   5篇
  1991年   7篇
  1990年   4篇
  1989年   9篇
  1988年   8篇
  1987年   10篇
  1986年   10篇
  1985年   11篇
  1984年   17篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1980年   9篇
  1979年   11篇
  1978年   7篇
  1976年   7篇
  1975年   7篇
  1974年   7篇
  1973年   13篇
  1971年   4篇
  1970年   3篇
  1969年   3篇
  1967年   4篇
  1966年   4篇
排序方式: 共有411条查询结果,搜索用时 93 毫秒
61.
This study was conducted to assess microenvironmental variability within integumental tissue of genetically identical mice with respect to a specific cellular response: cyclic synthesis of yellow and black pigment by hair bulb melanocytes. Crosses were performed within and between inbred strains of mice that were isogenic with the exception of a single gene substitution at the agouti locus. Agouti locus genes included the Avy, Aw, A, atd, at, ax, am, and a alleles. The pigment patterns of dorsal, flank, and ventral hairs of the first and third hair generations and of hairs growing in special integumentary areas such as the pinna, tail, and hind foot were studied. It was found that the amount of yellow pigment synthesized by hair bulb melanocytes within genetically identical mice is both agedependent and conditioned by the integumentary environment. Furthermore, the special integumentary regions produce hairs with a variety of pigment patterns in which the distribution and relative amounts of black and yellow pigments do not necessarily conform to dominance relationships expected among agouti locus alleles as judged by their effects on the pigmentation of the dorsal pelage. We conclude that within genetically uniform integumental tissues, microenvironmental differences occur and are reflected as alterations in the metabolic pattern of differentiated cells.  相似文献   
62.
63.
Molecular techniques previously used for genome comparisons of closely related bacterial species could prove extremely valuable for comparisons of complex microbial communities, or metagenomes. Our study aimed to determine the breadth and value of suppressive subtractive hybridization (SSH) in a pilot-scale analysis of metagenomic DNA from communities of microorganisms in the rumen. Suppressive subtractive hybridization was performed using total genomic DNA isolated from rumen fluid samples of two hay-fed steers, arbitrarily designated as tester or driver. Ninety-six subtraction DNA fragments from the tester metagenome were amplified, cloned and the DNA sequences were determined. Verification of the isolation of DNA fragments unique to the tester metagenome was accomplished through dot blot and Southern blot hybridizations. Tester-specific SSH fragments were found in 95 of 96 randomly selected clones. DNA sequences of subtraction fragments were analysed by computer assisted DNA and amino acid comparisons. Putative translations of 26 (32.1%) subtractive hybridization fragments exhibited significant similarity to Bacterial proteins, whereas 15 (18.5%) distinctive subtracted fragments had significant similarity to proteins from Archaea. The remainder of the subtractive hybridization fragments displayed no similarity to GenBank sequences. This metagenomic approach has exposed an unexpectedly large difference in Archaeal community structure between the rumen microbial populations of two steers fed identical diets and housed together. 16S rRNA dot blot hybridizations revealed similar proportions of Bacteria and Archaea in both rumen samples and suggest that the differences uncovered by SSH are the result of varying community structural composition. Our study demonstrates a novel approach to comparative analyses of environmental microbial communities through the use of SSH.  相似文献   
64.
65.
A new member of the human RNase A superfamily is reported. Identified in the human genome assembly as LOC 390443, this locus is located 128 kb telomeric to the established RNase A gene family cluster on chromosome 14q11.2. The amino acid sequence of this locus is sufficiently similar to the eight previously identified gene family members to warrant a designation as RNase 9. RNase 9 is expressed in a wide range of human tissues. In addition, a 30-amino acid sequence lying between a 26-amino acid putative signal peptide and the last 148 amino acids that align with the other RNases A is not seen in other members of the RNase A superfamily in any species. Nucleotide and amino acid sequences of RNase 9 in 13 nonhuman primate species were determined and indicate several conserved sites but, also, an excess of nonsynonymous substitutions, about one-third of which are radical substitutions. This suggests that RNase 9, similar to several other human RNases A, has been under diversifying selection in the primates. Data from the mouse and rat genomes indicate that RNase 9 is also present in rodents, thus making it older than most of the established members of the human RNase A superfamily. Many of the human RNases A have been shown to have antimicrobial, antiviral, or antiparasitic functions involved in host-defense mechanisms. The features of RNase 9 described here suggest that it, too, may be involved in host defense and that it, along with the rest of the superfamily, may prove to have played an important role in anthropoid evolution.  相似文献   
66.
We have developed a simple and robust transient expression system utilizing the 25 kDa branched cationic polymer polyethylenimine (PEI) as a vehicle to deliver plasmid DNA into suspension-adapted Chinese hamster ovary cells synchronized in G2/M phase of the cell cycle by anti-mitotic microtubule disrupting agents. The PEI-mediated transfection process was optimized with respect to PEI nitrogen to DNA phosphate molar ratio and the plasmid DNA mass to cell ratio using a reporter construct encoding firefly luciferase. Optimal production of luciferase was observed at a PEI N to DNA P ratio of 10:1 and 5 mug DNA 10(6) cells(-1). To manipulate transgene expression at mitosis, we arrested cells in G2/M phase of the cell cycle using the microtubule depolymerizing agent nocodazole. Using secreted human alkaline phosphatase (SEAP) and enhanced green fluorescent protein (eGFP) as reporters we showed that continued inclusion of nocodazole in cell culture medium significantly increased both transfection efficiency and reporter protein production. In the presence of nocodazole, greater than 90% of cells were eGFP positive 24 h post-transfection and qSEAP was increased almost fivefold, doubling total SEAP production. Under optimal conditions for PEI-mediated transfection, transient production of a recombinant chimeric IgG4 encoded on a single vector was enhanced twofold by nocodazole, a final yield of approximately 5 microg mL(-1) achieved at an initial viable cell density of 1 x 10(6) cells mL(-1). The glycosylation of the recombinant antibody at Asn297 was not significantly affected by nocodazole during transient production by this method.  相似文献   
67.
Genetic Studies of the Mouse Mutations Mahogany and Mahoganoid   总被引:8,自引:0,他引:8       下载免费PDF全文
The mouse mutations mahogany (mg) and mahoganoid (md) are negative modifiers of the Agouti coat color gene, which encodes a paracrine signaling molecule that induces a switch in melanin synthesis from eumelanin to pheomelanin. Animals mutant for md or mg synthesize very little or no pheomelanin depending on Agouti gene background. The Agouti protein is normally expressed in the skin and acts as an antagonist of the melanocyte receptor for α-MSH (Mc1r); however, ectopic expression of Agouti causes obesity, possibly by antagonizing melanocortin receptors expressed in the brain. To investigate where md and mg lie in a genetic pathway with regard to Agouti and Mc1r signaling, we determined the effects of these mutations in animals that carried either a loss-of-function Mc1r mutation (recessive yellow, Mc1r(e)) or a gain-of-function Agouti mutation (lethal yellow, A(y)). We found that the Mc1r(e) mutation suppressed the effects of md and mg, but that md and mg suppressed the effects of A(y) on both coat color and obesity. Plasma levels of α-MSH and of ACTH were unaffected by md or mg. These results suggest that md and mg interfere directly with Agouti signaling, possibly at the level of protein production or receptor regulation.  相似文献   
68.
The nucleus is a definitive feature of eukaryotic cells, comprising twin bilamellar membranes, the inner and outer nuclear membranes, which separate the nucleoplasmic and cytoplasmic compartments. Nuclear pores, complex macromolecular assemblies that connect the two membranes, mediate communication between these compartments. To explore the morphology, topology, and dynamics of nuclei within living plant cells, we have developed a novel method of confocal laser scanning fluorescence microscopy under time-lapse conditions. This is used for the examination of the transgenic expression in Arabidopsis thaliana of a chimeric protein, comprising the GFP (Green-Fluorescent Protein of Aequorea victoria) translationally fused to an effective nuclear localization signal (NLS) and to beta-glucuronidase (GUS) from E. coli. This large protein is targeted to the nucleus and accumulates exclusively within the nucleoplasm. This article provides online access to movies that illustrate the remarkable and unusual properties displayed by the nuclei, including polymorphic shape changes and rapid, long-distance, intracellular movement. Movement is mediated by actin but not by tubulin; it therefore appears distinct from mechanisms of nuclear positioning and migration that have been reported for eukaryotes. The GFP-based assay is simple and of general applicability. It will be interesting to establish whether the novel type of dynamic behavior reported here, for higher plants, is observed in other eukaryotic organisms.  相似文献   
69.
70.
L-Lactate dehydrogenase (L-LDH, E.C. 1.1.1.27) is encoded by two or three loci in all vertebrates examined, with the exception of lampreys, which have a single LDH locus. Biochemical characterizations of LDH proteins have suggested that a gene duplication early in vertebrate evolution gave rise to Ldh-A and Ldh-B and that an additional locus, Ldh-C arose in a number of lineages more recently. Although some phylogenetic studies of LDH protein sequences have supported this pattern of gene duplication, others have contradicted it. In particular, a number of studies have suggested that Ldh-C represents the earliest divergence among vertebrate LDHs and that it may have diverged from the other loci well before the origin of vertebrates. Such hypotheses make explicit statements about the relationship of vertebrate and invertebrate LDHs, but to date, no closely related invertebrate LDH sequences have been available for comparison. We have attempted to provide further data on the timing of gene duplications leading to multiple vertebrate LDHs by determining the cDNA sequence of the LDH of the tunicate Styela plicata. Phylogenetic analyses of this and other LDH sequences provide strong support for the duplications giving rise to multiple vertebrate LDHs having occurred after vertebrates diverged from tunicates. The timing of these LDH duplications is consistent with data from a number of other gene families suggesting widespread gene duplication near the origin of vertebrates. With respect to the relationships among vertebrate LDHs, our data are not consistent with previous claims that Ldh-C represented the earliest divergence. However, the precise relationships among some of the main lineages of vertebrate LDHs were not resolved in our analyses.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号